Topologically-guided continuous protein crystallization controls bacterial surface layer self-assembly
نویسندگان
چکیده
منابع مشابه
S-Layer Protein Self-Assembly
Crystalline S(urface)-layers are the most commonly observed cell surface structures in prokaryotic organisms (bacteria and archaea). S-layers are highly porous protein meshworks with unit cell sizes in the range of 3 to 30 nm, and thicknesses of ~10 nm. One of the key features of S-layer proteins is their intrinsic capability to form self-assembled mono- or double layers in solution, and at i...
متن کاملCrystallization of domains involved in self-assembly of the S-layer protein SbsC
The Gram-positive bacterium Geobacillus stearothermophilus ATCC 12980 is completely covered with a two-dimensional crystalline monolayer composed of the S-layer protein SbsC. In order to complete the structure of the full-length protein, additional soluble constructs containing the crucial domains for self-assembly have been successfully cloned, expressed and purified. Crystals obtained from th...
متن کاملSurface-structured bacterial cellulose with guided assembly-based biolithography (GAB).
A powerful replica molding methodology to transfer on-demand functional topographies to the surface of bacterial cellulose nanofiber textures is presented. With this method, termed guided assembly-based biolithography (GAB), a surface-structured polydimethylsiloxane (PDMS) mold is introduced at the gas-liquid interface of an Acetobacter xylinum culture. Upon bacterial fermentation, the generate...
متن کاملGuided self-assembly of molecular dipoles on a substrate surface
Molecules adsorbed on a substrate surface can self-assemble into a monolayer. This article models the process of self-assembly guided by an external object. The molecules are electric dipoles, diffusing on the surface at an elevated temperature. Pre-pattern a flat mask with a submonolayer of immobile atoms, which gives rise to a patterned contact potential field. Bring the mask to a small dista...
متن کاملFormation of tubes during self-assembly of bacterial surface layers.
Based on experimental studies on tube formation during self-assembly of bacterial surface (S)-layers, a mechanistic model for describing the underlying basic mechanisms is proposed and the effect of process parameters on growth velocity and tube radius is investigated. The S-layer is modeled as a curved sheet with discrete binding sites for the association of monomers distributed along the S-la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2019
ISSN: 2041-1723
DOI: 10.1038/s41467-019-10650-x